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Roughening of a propagating planar crack front
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2 Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 TKK, Finland
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A numerical model of the front of a planar crack propagating between two connected elastic plates is
investigated. The plates are modeled as square lattices of elastic beams. The plates are connected by similar but
breakable beams with a randomly varying stiffness. The crack is driven by pulling both plates at one end in
Mode I at a constant rate. We findz51/3, z54/3, andb51/4 for the roughness, dynamical, and growth
exponents, respectively, that describe the front behavior. This is similar to continuum limit analyses based on
a perturbative stress-intensity treatment of the front@H. Gao and J. R. Rice, J. Appl. Mech.56, 828~1989!#. We
discuss the differences to recent experiments.

PACS number~s!: 62.20.Mk, 46.50.1a, 68.35.Ct
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It was pointed out by Mandelbrotet al. @1# that the rough-
ness of cracks may be related to the fracture toughness o
material ~i.e., the energy needed to create a crack! if mea-
sured in the out-of-plane direction. The in-plane roughn
of a growing planar crack front is not similar in this respe
but relates to the strength of the material. The front has
pass regions of varying local strength, perhaps in the sens
the Griffith surface energy, or, more generally, local elas
energy barriers must be overcome by the crack for it
propagate. The physics of the propagation becomes de
dent on the details of the crack-front elasticity.

Suppose that the total length of a planar crack front isL,
and that there areN5L/dL local elastic barriers~c.f. Fig. 1!.
Assume that the stiffnesses of these areEi ,i 51, . . . ,N, and
that each of them breaks at a critical strainec . If the strain is
uniformly distributed, a total external forceN,Ei.ec will
be needed to initiate the propagation of a straight, ze
roughness crack. If, on the other hand, it is the stress wh
is shared globally along the crack front, the crack will fir
begin to propagate at the location of the minimum local st
nessEmin . This happens when the external force isNEminec ,
which for a broad distribution ofEi is considerably lower
than N,Ei.ec . For uncorrelated, randomEi , the initial
phase of the crack growth would now be related to the
related burst events along the crack front. This would lead
a slightly rough crack front with a random deposition-lik
scaling in contrast with the previous case. This thought
periment demonstrates that it is the stress-transfer rela
which is crucial for the shape of the crack front.

The scaling of the roughness of crack fronts is still
controversial issue since the theoretical suggestions for
roughness and dynamic exponents reported in the litera
show little agreement with experiments. In a recent exp
ment on weakly coupled blocks@2# z50.6360.03 was found
on length scales up to a few millimeters. The theoreti
predictions have usually been based on one-dimensi
models of cracks moving in a heterogeneous potential@3,4#.
Gao and Rice@5# presented a continuum elasticity calcul
tion in first order perturbation theory of the stress-intens
factor along a crack front that deviates slightly from
straight line. The stress intensity factorf (x) was expressed
in the form
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f ~x!52kE u~x!2u~x1!

ux2x1u2
dx1 , ~1!

wherex is the space coordinate along the front, andu(x) is
the location of the front. The kinetic roughening of a cra
front governed by Eq.~1! has been studied thoroughly@6–8#.
The values of the roughness, dynamic and growth expon
were in Ref.@8# found to bez51/3, z54/3, andb51/4,
respectively. This agrees well with the earlier function
renormalization group result by Ertas¸ and Kardar@9#. Thus
there is a controversial situation in that real crack fronts se
to be much rougher than what the theoretical estimates fz
imply.

In this paper we consider the crack roughening in a be
lattice model driven slowly, in a setup that roughly corr
sponds to the constant-velocity ensemble in depinning m
els, and which is similar to the experimental setup in@2#.
Beam lattices form a straightforward discretization of
elastic solid, and we should thus have a theoretical mo
which contains no major approximations when compared
the experimental system. The model should hence be us
when discussing the discrepancy between theory and ex
ment. We use here a cubic lattice geometry, with the bea
as the bonds connecting the lattice sites. The beams h
zero mass, unlike the sites. They are assumed to ha
square cross section, and we use the stiffness matrix
slender beam~i.e., bending dominates over shear deform

FIG. 1. A crack front propagating in a lattice of siz
6036031.
2878 ©2000 The American Physical Society
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FIG. 2. ~A! Equation~3! compared with simu-
lation results.~B! The simulated stress-intensit
distribution „ f (x)… in a ’V’ shaped crack front,
compared with the stress-intensity distributio
given by Eq.~1! for the same front shape.~C!
Equation~4! compared with the simulations.
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tions!, which can be derived from the linear theory of ela
ticity @10#. Notice that we only use linear elasticity, an
therefore neglect higher order terms in the displacement
the sites brought about by deformations. In other words,
model is strictly correct only if the beams break already at
infinitesimal deformation. The length of the beams is se
unity, their Poisson ratio is assumed to be zero, and
cross-sectional area is set tow25(0.7)2. The parameters ar
chosen based on numerical efficiency. In the model the fo
needed to elongate a beam a unit distance isEiw

2, and to
shear a beam,Eiw

4. The torque needed to bring about a u
torsional rotation and a unit off-axis rotation of one of t
ends of a beam areEiw

4/12 andEiw
4/3, respectively. The

masses, the moments of inertia of the sites and the You
moduli (Ei) of the beams are all random variables. The v
ues are taken from the distributionad i, where a525 is a
constant andd i is an uncorrelated stochastic variable whi
takes values between 0 and 1. Ifa is close to unity there is
little disorder in the system and the crack front will rema
almost straight during its propagation. Ifa is very large~e.g.,
a;1000), crack-front propagation is dominated by the d
order, and the roughness of the front will be essentially giv
by white noise. The largest lattices in the simulations
Lx3Ly3Lz5300340031. The crack is confined to thexy
plane, starting fromy50 at timet50. Only the beams con
necting the planesz50 and z51 are allowed to break. If
these beams are stretched by more thanec51%, they break
instantly and irreversibly. The two plates are separated
forcing the edgez50,y50 to move with velocityv/2 in the
negativez direction, while the edgez51,y50 is forced to
move with velocityv/2 in the positivez direction. This setup
will induce a nonconstant average crack-front velocity
will be discussed later.

The dynamic displacements of the lattice sites are ca
lated using a discrete form of Newton’s equations of mot
including a small linear viscous dissipation term,

F M

Dt2 1
C

2Dt GU~ t1Dt !5F2M

Dt2 2KGU~ t !

2F M

Dt2 2
C

2Dt GU~ t2Dt !, ~2!
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whereM is a diagonal mass matrix,K the stiffness matrix,C
a diagonal damping matrix,U a vector containing the dis
placements from equilibrium of the lattice sites,Dt the
length of the discrete time step, andt the time. In the simu-
lationsC5I , the unit matrix, andM54403I . The stiffness
matrix K is built from the stiffness matrices of the sing
beams (ki) @11# by rotations defined by the beam orient
tions, and summing the elements that correspond to the s
degree of freedom. An example of these systems is show
Fig. 1. The size of this lattice is 6036031, and the crack
has propagated about halfway through the sample.

In order to investigate how well our lattice model d
scribes a continuum elastic system we first compare
bending shape of the plates behind the crack tip. The c
tinuum elastic equation for the equilibrium out-of-plane d
placmentu of a plate of linear sizeL in the xy plane is

Ew3

12~12s!
“

4u~x,y!50, ~3!

with the boundary conditions for clamped end
@]u(x,y)/]n#50. Here n is the normal direction to the
clamped end@12#. If there is no disorder, the crack front wi
be straight and thereforeu will only be a function ofy. If we
furthermore apply the constraintsu(0)50 andu(L)5d, we
obtain the solutionu(y)5(3dy2/L2)2(2dy3/L3), which is
compared with that of the numerical simulations in F
2~A!. The difference between the simulated and the c
tinuum solution is practically nonexistent. To further check
Eq. ~1! is consistent with the simulation model, we check
the correlation of the stress-intensity factor along the fr
during the simulations with that calculated from Eq.~1!. This
correlation was as such rather poor, but for very simple fr
shapes the agreement became better. A fairly good co
spondence between the stress-intensity factors is dem
strated in Fig. 2~B!, where one should note in particular th
similarity of the long-range behavior of the effective kerne

To further test the model we calculated by elastic
theory the expected propagation velocity of the crack. It c
be shown that the shear stiffness of a plate scales as 1L3,
while the bending stiffness scales as 1/L2. This means that,
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when the crack has propagated for a sufficient distance,
out-of-plane bending moment at the crack tip will com
pletely dominate over the tensile force. For this reason alo
a beam-lattice model is qualitatively different from, e.g.,
fuse-lattice model@13#. Since the velocityv is given, we can
estimate the time it takes for the crack to propagate fromL to
L1dL, which then gives the propagation velocity. We gi
the result as the total number~N! of broken beams as a func
tion of time,

N~ t !}LF S 11
t

t0
D 1/2

21G , ~4!

wheret0 is a constant. Equation~4! is compared with simu-
lation results in Fig. 2~C! (a525,L560). The difference be-
tween the simulation results and Eq.~4! is very small. We
can thus conclude that the discrete lattice model used he
consistent with continuum elasticity theory. Consequen
the stress enhancement along the crack-front is expecte
follow essentially the continuum behavior, which is nece
sary for the comparison of the respective roughening beh
iors of the fronts.

We now turn to the simulation results for the kinet
roughness. We determine the roughness exponentz by the
Fourier spectrum of the crack front, and by the varia
bandwidth~local width! method@2#. For a self-affine profile
the Fourier spectrum behaves as

S~2p/ l ![U E u~x!e2 i2px/ ldxU2

}~2p/ l !122z. ~5!

For large wavelengthsl, the Fourier spectrum will reflect th
limited sample size due in particular to the periodic bound
conditions. For the spectral analysis we used a sample w
of 400 lattice units. The simulation results for three differe
samples are shown in Fig. 3A. This is in decent agreem
with the theoretical resultz51/3. The self-affinity in the
crack front develops relatively quickly for short wav
lengths. Saturation of the roughness is only reached when
front has propagated a considerable distance from its in
position. This presents a numerical problem since the pro
gation velocity decreases according to Eq.~4!. We therefore
used a small transverse system size of only 40 lattice u
to allow the roughness to develop correlations over
whole front. We also removed the periodic boundary con
tions. The average width of the front according to the va
able bandwidth method should scale asw( l 8)}( l 8)z. The

FIG. 3. The roughness exponentz51/3 of the perturbative so
lution compared with the simulation results.~A! The Fourier spec-
trum method, and~B! the variable bandwidth method.
he

e,

is
,
to

-
v-

e

y
th
t
nt

he
al
a-

ts,
e
i-
-

simulation result averaged over several hundreds of sam
is shown in Fig. 3~B!. The roughness exponent is again co
sistent with the valuez51/3.

The growth exponentb is defined by the initial increase
of the roughness, or the average front width. This sho
scale with the average traveled distance of the front
w(y)}yb. Recall that the average front velocity decreas
with time, and thus one has to defineb as a function ofy
@14#. The simulation results for three different, 400 latti
unit wide samples, are shown in Fig. 4~A!. The average for
the three samples is shown in Fig. 4~B!. In both figures the
roughness growth is compared with the perturbation the
resultb51/4, with very reasonable agreement.

Notice that the scaling exponents, as obtained above
dicate the valuez54/3 for the dynamical exponent via th
scaling relationz5z/b. An independent determination ofz
is rather tricky since, as explained above, saturation is
merically difficult to reach. On the other hand,z can be mea-
sured from the spreading of correlations in the front profi
As in Ref. @8#, one can use a scaling ansatz for the proba
ity of events in the spreading processp(x,dt) (x is the dis-
tance of the event from the original site,dt the elapsed time!
which in particular allows to consider the nearest neighb
of an active site~i.e., of a beam that breaks!. In our case this
is complicated by the fact that, due to decreasing front
locity, the breaking rate of beams goes down, but on
other hand, the response time of the front stays the sa
Thus we use the scaling

p~1,dt !}dt21/z. ~6!

This is valid for intermediate times such that the break
events are still correlated, and not dependent on the brea
rate. The large-t contribution indicates a mean-field bac
ground, that has first to be subtracted fromp(1,dt) to obtain
the real scaling behavior. Although it is hard to determine
exact upper limit of the regime in which scaling can be e
pected, the result is nevertheless consistent withz54/3 as is
evident from Fig. 5.

As a general conclusion, it is quite obvious that our elas
lattice model leads to a crack front geometry which is co
sistent with that of Eq.~1!. The perturbative results are thu
in agreement with our simulation results for a thin, thre
dimensional system. This makes the discrepancy inz be-
tween theory and the experiment of Ref.@2# even more dif-
ficult to understand. There is however a variety of possi
explanations, and several of them are discussed in R
@3,4#. An example of such an explanation would be the eff
of acoustic emission from a local fracture that may be qu

FIG. 4. The growth exponentb51/4 of the perturbative solu-
tion compared with the simulation results.~A! The results for three
separate samples and~B! the averaged growth.
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PRE 62 2881ROUGHENING OF A PROPAGATING PLANAR CRACK FRONT
tatively different in the experiments and in our numeric
model. In the simulations, acoustic emission have at mo
minor effect. Another possibility is that the disorder in th
experiment may differ qualitatively from the uncorrelat
disorder assumed in most models and used in our sim
tions. Both power-law amplitude distributions~of, e.g., the
local breaking stress! and correlated patches would lead
the very least to a crossover lengthscale, below which
asymptotic scaling would be modified@15#. This crossover
scale could obscure comparisons between the model re
and the experiments.

A closer look at the relations between different leng
scales in the experiment@2# reveals, however, that a resu
that would exactly correspond to our model result is actua
impossible. The geometry of the crack front in our numeri
model is a result of competition between the uncorrela
disorder and the stress concentration effects. The forme
creases roughness, while the latter tends to decrease it.
stress concentration is governed by the bending of the ela
plates in the direction perpendicular to the crack propagat

FIG. 5. The simulation results for Eq.~6! compared with the
perturbative solutionz54/3.
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In the experiment the disorder was introduced by a sa
blasting procedure with a bead size of 50mm, while the
elastic plate in the experiment were 4 mm thick. Bending
an elastic plate is in practice possible only overlength sca
which are considerably larger than the thickness of the pl
By comparing the length scales of the disorder and the p
thickness~i.e., mm and mm!, it is easy to see that in the
experiment roughness cannot arise from the same compe
mechanism as in the numerical model. Furthermore, in
experiment the roughness of the fronts was established
length scales up to a few millimeters, while the fronts a
peared more or less flat on larger length scales. This pro
again that bending of the plates cannot be responsible for
roughness of the crack front as it should then appearonly on
length scales larger than the mm scale. With a bead siz
50 mm one would expect that the variance of the loc
strength on the mm scale should be very small, which
consistent with a flat front on the larger length scales. In
numerical model we found that the front roughness vanis
rapidly with decreasing disorder as is only to be expecte

In summary, we have investigated a lattice model for
roughening of a propagating planar crack, which is confin
between two coupled elastic plates. The front roughness
pears as a result of heterogeneous material strength, i.e.
order. Due to the long-range nature of the front elasticity
is worth noting that the inclusion of bulk damage does n
change our conclusions. The kinetic roughening is found
belong to the same universality class with the correspond
continuum models. Based on our model, we would exp
that in experiments where the scale of the disorder is co
parable with the thickness of the plate, i.e., for, e.g., t
elastic plates, a scaling more in line with model predictio
would be found.
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