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Roughening of a propagating planar crack front
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A numerical model of the front of a planar crack propagating between two connected elastic plates is
investigated. The plates are modeled as square lattices of elastic beams. The plates are connected by similar but
breakable beams with a randomly varying stiffness. The crack is driven by pulling both plates at one end in
Mode | at a constant rate. We fingi=1/3, z=4/3, and3=1/4 for the roughness, dynamical, and growth
exponents, respectively, that describe the front behavior. This is similar to continuum limit analyses based on
a perturbative stress-intensity treatment of the ffphtGao and J. R. Rice, J. Appl. Medb6, 828(1989]. We
discuss the differences to recent experiments.

PACS numbgs): 62.20.Mk, 46.50+a, 68.35.Ct

It was pointed out by Mandelbret al.[1] that the rough- u(x) —u(xy)
ness of cracks may be related to the fracture toughness of the f(x)=— = X1, 1)

material (i.e., the energy needed to create a cjatknea-

sured in the out-of-plane direction. The in-plane _roughnes\sNhereX is the space coordinate along the front, arfa) is
of a growing planar crack front is not similar in this respect

but relates to the strength of the material. The front has tthe location of the front. The kinetic roughening of a crack

. ) ; ront governed by Eq.l) has been studied thoroughi§—§|.
pass regions of varying local strength, perhaps in the sense Qﬁe values of the roughness, dynamic and growth exponents
the Griffith surface energy, or, more generally, local elastic '

energy barriers must be overcome by the crack for it to\r/éesreecl:rt]ivzlef.[i]hrsu:drggsb\?vgeﬁ 1\/(/?t,hzt:h:/ 3éa?l?edrﬁfjnléﬁbnal
propagate. The physics of the propagation becomes depen- P Y 9

dent on the details of the crack-front elasticity renorr_nalization group re_sult_ by_E[tmd Kardar(9]. Thus
Suppose that the total length of a planar Créck fromt is there is a controversial situation in that real crack fronts seem

and that there ari=L/ 5L local elastic barriersc.. Fig. 1), to be much rougher than what the theoretical estimateg for

Assume that the stiffnesses of theselgyg =1, ... N, and imply.

" . - In this paper we consider the crack roughening in a beam
that each of them breaks at a critical strain If the strain is : : .
uniformly distributed, a total external fordé<E;> e will lattice model driven slowly, in a setup that roughly corre-

be needed to initiate the bropagation of a straight Zero§ponds to the constant-velocity ensemble in depinning mod-
propag gnt, Is, and which is similar to the experimental setup[2i

irgusghf;rrlggs Icgzgﬁ' I;gﬂ tr;ﬁeog;gw ?rr:)%tlttlhseﬂ::?aitliev?/ﬁl V;rslf eam lattices form a straightforward discretization of an
9 y 9 ’ elastic solid, and we should thus have a theoretical model

22?5?;9 p?ﬁ_zgﬁ;e a;rEZe Iﬁgﬁt't%g Zf ttzerznrgll?gpclg\?éo?al Stncf'Which contains no major approximations when compared to
hi h“;'”' kl) dch)j' { 't\)Nt' £ X id bII minec’ the experimental system. The model should hence be useful
which for a broad distribution Ok, 1S considerably T1owWer o, discussing the discrepancy between theory and experi-

thhan N<fEtih> €c- Fkor unct(r)]rrelatﬁjd, rangorﬁil, tthg t'n':'r?l ment. We use here a cubic lattice geometry, with the beams
phase of the crack growth would now be refated 10 the Ung, o e hongs connecting the lattice sites. The beams have

relalteﬂtlburst e\r/]ents all(lofng tthe .(;LaCk frogt. Thc'js WOL.',I[q Ie?gt ero mass, unlike the sites. They are assumed to have a
a siightly rough crack front with a random deposition-iike o, .56 cross section, and we use the stiffness matrix of a

sca_lmg in contrast with the Previous case. This thought ©Xslender beanti.e., bending dominates over shear deforma-
periment demonstrates that it is the stress-transfer relation

which is crucial for the shape of the crack front.
The scaling of the roughness of crack fronts is still a

controversial issue since the theoretical suggestions for the =
roughness and dynamic exponents reported in the literature ',,:,,:,":"",;;";,;g:;;;,;;;,,;;,;,

; ; ; ; A
show little agreement with experiments. In a recent experi- -
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ment on weakly coupled blockg] {=0.63+0.03 was found

on length scales up to a few millimeters. The theoretical
predictions have usually been based on one-dimensional
models of cracks moving in a heterogeneous potefidl.

Gao and Ricd5] presented a continuum elasticity calcula-
tion in first order perturbation theory of the stress-intensity
factor along a crack front that deviates slightly from a
straight line. The stress intensity factbfx) was expressed FIG. 1. A crack front propagating in a lattice of size
in the form 60x60x 1.
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05 10 15 20 25 30 0 10 20 30 40 50 | FIG. 2. (A) Equation(3) compared with simu
y X ation results.(B) The simulated stress-intensity

distribution (f(x)) in a 'V’ shaped crack front,

compared with the stress-intensity distribution
ox1 given by Eq.(1) for the same front shapécC)
5x161 Equation(4) compared with the simulations.
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tions), which can be derived from the linear theory of elas-whereM is a diagonal mass matrik the stiffness matrixC

ticity [10]. Notice that we only use linear elasticity, and a diagonal damping matriX) a vector containing the dis-
therefore neglect higher order terms in the displacements gflacements from equilibrium of the lattice sitedf the

the sites brought about by deformations. In other words, oufength of the discrete time step, ahthe time. In the simu-
model is strictly correct only if the beams break already at anations C=1, the unit matrix, andvl =440x | . The stiffness
infinitesimal deformation. The length of the beams s set tanatrix K is built from the stiffness matrices of the single
unity, their Poisson ratio is assumzed to be zero, and thgeams k) [11] by rotations defined by the beam orienta-
cross-sectional area is setwg= (0.7)°. The parameters are tions, and summing the elements that correspond to the same

chosen based on numerical efficiency. In the model the forc@egree of freedom. An example of these systems is shown in
needed to elongate a beam a unit distancg;ig®, and to Fig. 1. The size of this lattice is 6060X 1, and the crack

shear a beant;w*. The torque needed to bring about a unit < propagated about halfway through the sample
torsional rotation and a unit off-axis rotation of one of the In order to investigate how well our lattice mc;del de-

ends of a beam arg;w*/12 andE;w*/3, respectively. The , ; : :
§cr|bes a continuum elastic system we first compare the

masses, the moments of inertia of the sites and the Young . : .
moduli (E;) of the beams are all random variables. The Val_bendmg sha_pe of th_e plates behm_d_ the crack tip. The con-
tinuum elastic equation for the equilibrium out-of-plane dis-

ues are taken from the distributicafi, wherea=25 is a | iU of a plate of i 76 in th | .
constant and; is an uncorrelated stochastic variable which Placmentu ot a piate ot finear siz& in the xy piane Is

takes values between 0 and lalfs close to unity there is Ew
little disorder in the system and the crack front will remain —————V4u(x,y)=0, 3
almost straight during its propagation dis very large(e.g., 12(1-o0)

a~1000), crack-front propagation is dominated by the dis-

order, and the roughness of the front will be essentially givetWith  the ~ boundary conditions for clamped ends:
by white noise. The largest lattices in the simulations ard du(x,y)/dn]=0. Heren is the normal direction to the
L,xLyXL,=300x400x 1. The crack is confined to they clamped end12]. If there is no disorder, the crack front will
p|ane, Starting frony:O at timet=0. On|y the beams con- be Straight and thereforewill Only be a function Ofy. If we
necting the planeg=0 andz=1 are allowed to break. If furthermore apply the constrainz0)=0 andu(L)=d, we
these beams are stretched by more than1%, they break Obtain the solutioru(y)=(3dy?/L?) — (2dy*/L®), which is

instantly and irreversibly. The two plates are separated bgompared with that of the numerical simulations in Fig.
forcing the edge=0,y=0 to move with velocityw/2 in the ~ 2(A). The difference between the simulated and the con-

negativez direction, while the edge=1y=0 is forced to  tinuum solution is practically nonexistent. To further check if

move with velocityv/2 in the positivez direction. This setup  Ed- (1) is consistent with the simulation model, we checked

will induce a nonconstant average crack-front velocity aghe correlation of the stress-intensity factor along the front

will be discussed later. during the simulations with that calculated from ). This
The dynamic displacements of the lattice sites are calcycorrelation was as such rather poor, but for very simple front

lated using a discrete form of Newton’s equations of motionShapes the agreement became better. A fairly good corre-
including a small linear viscous dissipation term, spondence between the stress-intensity factors is demon-

strated in Fig. 8B), where one should note in particular the
similarity of the long-range behavior of the effective kernels.
To further test the model we calculated by elasticity
theory the expected propagation velocity of the crack. It can
(M C Ut—AD), (2) be shown that the shear stiffness of a plate scaleslas 1/
At? 2At ( ), while the bending stiffness scales a&2/This means that,

2M
U(t+At)=

ae K

u(t)

M, C
A7 2At
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FIG. 3. The roughness exponent 1/3 of the perturbative so-
lution compared with the simulation result$\) The Fourier spec-
trum method, andB) the variable bandwidth method.

FIG. 4. The growth exponeng=1/4 of the perturbative solu-
tion compared with the simulation resul{&\) The results for three
separate samples afl) the averaged growth.

when the crack has propagated for a sufficient distance, thgmulation result averaged over several hundreds of samples
out-of-plane bending moment at the crack tip will com- s shown in Fig. 88). The roughness exponent is again con-
pletely dominate over the tensile force. For this reason alongjstent with the valug=1/3.
a beam-lattice model is qualitatively different from, e.g., a Tpe growth exponeng is defined by the initial increase
fuse-lattice mode]13]. Since the velocity is given, we can  of the roughness, or the average front width. This should
estimate the time it takes for the crack to propagate ftdm  scale with the average traveled distance of the front as
L+ 6L, which then gives the propagation velocity. We give y(y)«cy#. Recall that the average front velocity decreases
the result as the total numbgX) of broken beams as a func- \yith time, and thus one has to defigeas a function ofy
tion of time, [14]. The simulation results for three different, 400 lattice
unit wide samples, are shown in FiglAd. The average for
t\ 12 the three samples is shown in FigB4. In both figures the
N(t)ocL|| 1+ —) —1} (4)  roughness growth is compared with the perturbation theory
result 3= 1/4, with very reasonable agreement.

Notice that the scaling exponents, as obtained above, in-
wheret, is a constant. Equatiof®) is compared with simu-  dicate the valug=4/3 for the dynamical exponent via the
lation results in Fig. &) (a=25L =60). The difference be- scaling relationz=¢/8. An independent determination af
tween the simulation results and E@) is very small. We s rather tricky since, as explained above, saturation is nu-
can thus conclude that the discrete lattice model used here jgerically difficult to reach. On the other hargigan be mea-
consistent with continuum elasticity theory. Consequentlysured from the spreading of correlations in the front profile.
the stress enhancement along the crack-front is expected s in Ref.[8], one can use a scaling ansatz for the probabil-
follow essentially the continuum behavior, which is neCGS-ity of events in the Spreading procqs@(,é‘t) (X is the dis-
sary for the comparison of the respective roughening behavance of the event from the original sit, the elapsed time
iors of the fronts. which in particular allows to consider the nearest neighbors

We now turn to the simulation results for the kinetic of an active Site{i_e_, of a beam that brea;kgn our case this
roughness. We determine the roughness expofiéayt the js complicated by the fact that, due to decreasing front ve-
Fourier spectrum of the crack front, and by the variablelocity, the breaking rate of beams goes down, but on the

bandwidth(local width) method|[2]. For a self-affine profile  other hand, the response time of the front stays the same.
the Fourier spectrum behaves as Thus we use the scaling

2 p(1,8t) st~ (6)
«(27/)t72%.  (5)

S(Zwll)zf u(x)e "2™dx

This is valid for intermediate times such that the breaking
events are still correlated, and not dependent on the breaking
For large wavelengthis the Fourier spectrum will reflect the rate. The large- contribution indicates a mean-field back-
limited sample size due in particular to the periodic boundaryground, that has first to be subtracted frpii,ét) to obtain
conditions. For the spectral analysis we used a sample widtthe real scaling behavior. Although it is hard to determine the
of 400 lattice units. The simulation results for three differentexact upper limit of the regime in which scaling can be ex-
samples are shown in Fig. 3A. This is in decent agreemerected, the result is nevertheless consistent w4td/3 as is
with the theoretical resulf=1/3. The self-affinity in the evident from Fig. 5.

crack front develops relatively quickly for short wave As ageneral conclusion, it is quite obvious that our elastic
lengths. Saturation of the roughness is only reached when tHattice model leads to a crack front geometry which is con-
front has propagated a considerable distance from its initiadistent with that of Eq(1). The perturbative results are thus
position. This presents a numerical problem since the propdan agreement with our simulation results for a thin, three-
gation velocity decreases according to E4). We therefore  dimensional system. This makes the discrepancy ibe-
used a small transverse system size of only 40 lattice unitéyween theory and the experiment of REZ] even more dif-

to allow the roughness to develop correlations over thdicult to understand. There is however a variety of possible
whole front. We also removed the periodic boundary condi-explanations, and several of them are discussed in Refs.
tions. The average width of the front according to the vari-{3,4]. An example of such an explanation would be the effect
able bandwidth method should scale w6l ')>(1")¢. The of acoustic emission from a local fracture that may be quali-
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10000 =75 In the experiment the_ disorder was introduced t_)y a sand-
1000 XN blasting proqedure Wlth_a bead size of hn, while the
N elastic plate in the experiment were 4 mm thick. Bending of
3400 an elastic plate is in practice possible only overlength scales
& v which are considerably larger than the thickness of the plate.
10 T By comparing the length scales of the disorder and the plate
] thickness(i.e., um and mnj, it is easy to see that in the
00T 01 1 70 100

experiment roughness cannot arise from the same competing
mechanism as in the numerical model. Furthermore, in the
experiment the roughness of the fronts was established on
length scales up to a few millimeters, while the fronts ap-
peared more or less flat on larger length scales. This proves
again that bending of the plates cannot be responsible for the
tatively different in the experiments and in our numericalroughness of the crack front as it should then apperon
model. In the simulations, acoustic emission have at most gngth scales larger than the mm scale. With a bead size of
minor effect. Another possibility is that the disorder in the 50 um one would expect that the variance of the local
experiment may differ qualitatively from the uncorrelated strength on the mm scale should be very small, which is
disorder assumed in most models and used in our simulaconsistent with a flat front on the larger length scales. In the
tions. Both power-law amplitude distributiorief, e.g., the  numerical model we found that the front roughness vanishes
local breaking stregsand correlated patches would lead atrapidly with decreasing disorder as is only to be expected.
the very least to a crossover lengthscale, below which the In summary, we have investigated a lattice model for the
asymptotic scaling would be modifigd5]. This crossover roughening of a propagating planar crack, which is confined
scale could obscure comparisons between the model resultetween two coupled elastic plates. The front roughness ap-
and the experiments. pears as a result of heterogeneous material strength, i.e., dis-

A closer look at the relations between different lengthorder. Due to the long-range nature of the front elasticity, it
scales in the experimef2] reveals, however, that a result is worth noting that the inclusion of bulk damage does not
that would exactly correspond to our model result is actuallychange our conclusions. The kinetic roughening is found to
impossible. The geometry of the crack front in our numericalbelong to the same universality class with the corresponding
model is a result of competition between the uncorrelate¢ontinuum models. Based on our model, we would expect
disorder and the stress concentration effects. The former irthat in experiments where the scale of the disorder is com-
creases roughness, while the latter tends to decrease it. Tparable with the thickness of the plate, i.e., for, e.g., thin
stress concentration is governed by the bending of the elastilastic plates, a scaling more in line with model predictions
plates in the direction perpendicular to the crack propagationwvould be found.

FIG. 5. The simulation results for E¢6) compared with the
perturbative solutiorz=4/3.
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